Module amenability and module biprojectivity of θ-Lau product of Banach algebras
Authors
Abstract:
In this paper we study the relation between module amenability of $theta$-Lau product $A×_theta B$ and that of Banach algebras $A, B$. We also discuss module biprojectivity of $A×theta B$. As a consequent we will see that for an inverse semigroup $S$, $l^1(S)×_theta l^1(S)$ is module amenable if and only if $S$ is amenable.
similar resources
module amenability and module biprojectivity of θ-lau product of banach algebras
in this paper we study the relation between module amenability of θ - lau product a×θb and that of banach algebras a, b. we also discuss module biprojectivity of a×θb. as a consequent we will see that for an inverse semigroup s, l 1 (s) ×θ l 1 (s) is module amenable if and only if s is amenable.
full textCyclic amenability of Lau product and module extension Banach algebras
Recently, some results have been obtained on the (approximate) cyclic amenability of Lau product of two Banach algebras. In this paper, by characterizing of cyclic derivations on Lau product and module extension Banach algebras, we present general necessary and sufficient conditions for those to be (approximate) cyclic amenable. This not only provides new results on (approximate) cyclic amenabi...
full textModule Amenability of module dual Banach algebras
In this paper we defined the concept of module amenability of Banach algebras and module connes amenability of module dual Banach algebras.Also we assert the concept of module Arens regularity that is different with [1] and investigate the relation between module amenability of Banach algebras and connes module amenability of module second dual Banach algebras.In the following we studythe...
full textModule-Amenability on Module Extension Banach Algebras
Let $A$ be a Banach algebra and $E$ be a Banach $A$-bimodule then $S = A oplus E$, the $l^1$-direct sum of $A$ and $E$ becomes a module extension Banach algebra when equipped with the algebras product $(a,x).(a^prime,x^prime)= (aa^prime, a.x^prime+ x.a^prime)$. In this paper, we investigate $triangle$-amenability for these Banach algebras and we show that for discrete inverse semigroup $S$ with...
full textModule approximate amenability of Banach algebras
In the present paper, the concepts of module (uniform) approximate amenability and contractibility of Banach algebras that are modules over another Banach algebra, are introduced. The general theory is developed and some hereditary properties are given. In analogy with the Banach algebraic approximate amenability, it is shown that module approximate amenability and contractibility are the same ...
full textBiflatness and biprojectivity of Lau product of Banach algebras
Amonge other things we give sufficient and necessary conditions for the Lau product of Banachalgebras to be biflat or biprojective.
full textMy Resources
Journal title
volume 03 issue 03
pages 185- 196
publication date 2014-12-30
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023